题目内容


如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.

(1)当F为AB的中点时,求该函数的解析式;

(2)当k为何值时,△EFA的面积最大,最大面积是多少?


    解:(1)∵在矩形OABC中,OA=3,OC=2,

∴B(3,2),

∵F为AB的中点,

∴F(3,1),

∵点F在反比例函数y=(k>0)的图象上,

∴k=3,

∴该函数的解析式为y=(x>0);

(2)由题意知E,F两点坐标分别为E(,2),F(3,),

∴S△EFA=AF•BE=×k(3﹣k),

=k﹣k2

=﹣(k2﹣6k+9﹣9)

=﹣(k﹣3)2+

当k=3时,S有最大值.

S最大值=


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网