题目内容

已知:如图(1),△OAB是边长为2的等边三角形,0A在x轴上,点B在第一象限内;△OCA是一个等腰三角形,OC=AC,顶点C在第四象限,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止.

1.求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;

2.在OA上(点O、A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;

3.如图(2),现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.

 

 

1.过点于点.(如图①)

,∴

      ∵, ∴

   在Rt中, 

时,,,

过点于点.(如图①)

     在Rt中,∵,∴

     即 .………………………………………2分

2.当时,(如图②)

,∴

故当时,,当时,……………4分

        …………………6分

3.的周长不发生变化.

延长至点,使,连结.(如图③)

,∴

  …………………7分

       ∴

        ∴. 又∵

   ∴.∴   ……………………………………9分

的周长不变,其周长为4   ……………………………………10分

解析:(1)由于点Q从点O运动到点C需要 秒,点P从点A→O→B需要 秒,所以分两种情况讨论:①0<t< ;②≤t<.针对每一种情况,根据P点所在的位置,由三角形的面积公式得出△OPQ的面积S与运动的时间t之间的函数关系,并且得出自变量t的取值范围

(2)如果△OCD为等腰三角形,那么分D在OA边或者OB边上两种情形.每一种情形,都有可能O为顶点,C为顶点,D为顶点,分别讨论,得出结果;

(3)如果延长BA至点F,使AF=OM,连接CF,则由SAS可证△MOC≌△FAC,得出MC=CF,再由SAS证出△MCN≌△FCN,得出MN=NF,那么△BMN的周长=BA+BO=4.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网