搜索
题目内容
(2007•金华)如图所示为一弯形管道,其中心线是一段圆弧
.已知半径OA=60cm,∠AOB=108°,则管道的长度(即
的长)为
cm.(结果保留π)
试题答案
相关练习册答案
【答案】
分析:
本题的关键是利用弧长公式计算弧长.
解答:
解:
=36πcm.
点评:
本题的关键是利用弧长公式计算弧长.
练习册系列答案
生本精练册系列答案
初中毕业升学指导系列答案
考必胜全国小学毕业升学考试试卷精选系列答案
书立方期末大考卷系列答案
中招试题详解暨中招复习指导系列答案
小学升学多轮夯基总复习系列答案
金钥匙期末冲刺100分系列答案
名师指导期末冲刺卷系列答案
初中英语听力训练苏州大学出版社系列答案
教与学中考必备系列答案
相关题目
(2007•金华)如图1,在平面直角坐标系中,已知点A(0,4
),点B在x正半轴上,且∠ABO=30度.动点P在线段AB上从点A向点B以每秒
个单位的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边△PMN.
(1)求直线AB的解析式;
(2)求等边△PMN的边长(用t的代数式表示),并求出当等边△PMN的顶点M运动到与原点O重合时t的值;
(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求
出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.
(2007•金华)如图1,在平面直角坐标系中,已知点A(0,4
),点B在x正半轴上,且∠ABO=30度.动点P在线段AB上从点A向点B以每秒
个单位的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边△PMN.
(1)求直线AB的解析式;
(2)求等边△PMN的边长(用t的代数式表示),并求出当等边△PMN的顶点M运动到与原点O重合时t的值;
(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求
出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.
(2007•金华)如图1,在平面直角坐标系中,已知点A(0,4
),点B在x正半轴上,且∠ABO=30度.动点P在线段AB上从点A向点B以每秒
个单位的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边△PMN.
(1)求直线AB的解析式;
(2)求等边△PMN的边长(用t的代数式表示),并求出当等边△PMN的顶点M运动到与原点O重合时t的值;
(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求
出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.
(2007•金华)如图1,在平面直角坐标系中,已知点A(0,4
),点B在x正半轴上,且∠ABO=30度.动点P在线段AB上从点A向点B以每秒
个单位的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边△PMN.
(1)求直线AB的解析式;
(2)求等边△PMN的边长(用t的代数式表示),并求出当等边△PMN的顶点M运动到与原点O重合时t的值;
(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求
出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.
(2007•金华)如图1,在平面直角坐标系中,已知点A(0,4
),点B在x正半轴上,且∠ABO=30度.动点P在线段AB上从点A向点B以每秒
个单位的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边△PMN.
(1)求直线AB的解析式;
(2)求等边△PMN的边长(用t的代数式表示),并求出当等边△PMN的顶点M运动到与原点O重合时t的值;
(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求
出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案