题目内容
完成下面证明过程并写出推理根据:
已知:如图所示,∠BAP与∠APD互补,∠1=∠2.
![]()
求证:∠E=∠F.
证明:
∵∠BAP与∠APD互补(已知),即∠BAP+∠APD=180°,
∴ ∥ ( ),
∴∠BAP=∠APC ( ).
又∵∠1=∠2,
∴∠BAP-∠1=∠APC-∠2((等式的性质),
即∠3=∠4,
∴ ∥ ( ),
∴∠E=∠F( ).
练习册系列答案
相关题目
题目内容
完成下面证明过程并写出推理根据:
已知:如图所示,∠BAP与∠APD互补,∠1=∠2.
![]()
求证:∠E=∠F.
证明:
∵∠BAP与∠APD互补(已知),即∠BAP+∠APD=180°,
∴ ∥ ( ),
∴∠BAP=∠APC ( ).
又∵∠1=∠2,
∴∠BAP-∠1=∠APC-∠2((等式的性质),
即∠3=∠4,
∴ ∥ ( ),
∴∠E=∠F( ).