题目内容
将3种作物种植在如图所示的5块试验田里,每块种植一种作物,且相邻的试验田不能种同一种作物,不同的种植方法共有 种.
【答案】分析:第一块田有3种选择方法,第二、三、四、五块田均有2种选择方法,因此共有3×2×2×2×2=48种种植方法,而这48种方法中,包含了只种两种作物的可能,因此要将其除去,只种两种作物时,不同的种法有2×3=6种,因此本题的种植方法共有48-6=42种.
解答:解:第一块田有3种种植方法,第二、三、四、五块田均有2种种植方法,
因此共有3×2×2×2×2=48种种植方法;
其中,有2×3=6种是只种两种作物的种植方法,
因此所求的种植方法有48-6=42种.
故答案为:42.
点评:用分步计数法易求得总的种植方法,但是很多同学容易忽略只种2种作物的情况,因此做题时要读清题意,细心求解.
解答:解:第一块田有3种种植方法,第二、三、四、五块田均有2种种植方法,
因此共有3×2×2×2×2=48种种植方法;
其中,有2×3=6种是只种两种作物的种植方法,
因此所求的种植方法有48-6=42种.
故答案为:42.
点评:用分步计数法易求得总的种植方法,但是很多同学容易忽略只种2种作物的情况,因此做题时要读清题意,细心求解.
练习册系列答案
相关题目