题目内容
【题目】如图,在□ABCD中,E、F分别是AB、DC边上的点,且AE=CF,
![]()
(1)求证:
≌
.
(2)若
DEB=90
,求证四边形DEBF是矩形.
【答案】(1)利用SAS证明;(2)证明见解析.
【解析】
试题此题考查了平行四边形的判定与性质、矩形的判定以及全等三角形的判定与性质.注意有一个角是直角的平行四边形是矩形,首先证得四边形ABCD是平行四边形是关键.(1)由在□ABCD中,AE=CF,可利用SAS判定△ADE≌△CBF.(2)由在ABCD中,且AE=CF,利用一组对边平行且相等的四边形是平行四边形,可证得四边形DEBF是平行四边形,又由∠DEB=90°,可证得四边形DEBF是矩形.
试题解析:(1)∵四边形ABCD是平行四边形,
∴AD=CB,∠A=∠C,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(SAS).
(2)∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∵AE=CF,∴BE=DF,
∴四边形ABCD是平行四边形,
∵∠DEB=90°,∴四边形DEBF是矩形.
故答案为(1)利用SAS证明;(2)证明见解析.
练习册系列答案
相关题目