题目内容
计算:
(1)
+
(2)
-x-1
(3)
+
+
(4)
-
(5)
+1-a
(6)(
-
)•
.
(1)
| 7a |
| 3(a-4) |
| 4a |
| 3(4-a) |
(2)
| x2 |
| x-1 |
(3)
| 12 |
| m2-9 |
| 2 |
| 3-m |
| 1 |
| m+3 |
(4)
| x2 |
| y-x |
| y2 |
| y-x |
(5)
| a2 |
| a+1 |
(6)(
| x+2 |
| x2-2x |
| x-1 |
| x2-4•x+4 |
| x |
| 4-x |
分析:(1)先通分,再加减;
(2)先将-x-1看做整体,然后再加减;
(3)先根据平方差公式通分,再加减;
(4)先通分,再加减;
(5)先将1-a看做整体,再加减;
(6)将括号内的部分通分,加减后相除即可.
(2)先将-x-1看做整体,然后再加减;
(3)先根据平方差公式通分,再加减;
(4)先通分,再加减;
(5)先将1-a看做整体,再加减;
(6)将括号内的部分通分,加减后相除即可.
解答:解:(1)原式=
=
;
(2)原式=
-
=
=
;
(3)
-
+
=
=-
;
(4)原式=
=
=-x-y;
(5)原式=
+
=
;
(6)原式=[
-
]•
=[
-
]•
=-
.
| 7a-4a |
| 3(a-4) |
=
| a |
| a-4 |
(2)原式=
| x2 |
| x-1 |
| (x+1)(x-1) |
| x-1 |
=
| x2-x2+1 |
| x-1 |
=
| 1 |
| x-1 |
(3)
| 12 |
| m2-9 |
| 2m+6 |
| m2-9 |
| m-3 |
| m2-9 |
=
| 3-m |
| m2-9 |
=-
| 1 |
| m+3 |
(4)原式=
| x2-y2 |
| y-x |
=
| (x-y)(x+y) |
| y-x |
=-x-y;
(5)原式=
| a2 |
| a+1 |
| 1-a2 |
| a+1 |
=
| 1 |
| a+1 |
(6)原式=[
| x+2 |
| x(x-2) |
| x-1 |
| (x-2)2 |
| x |
| 4-x |
=[
| x2-4 |
| x(x-2)2 |
| x2-x |
| x(x-2)2 |
| x |
| 4-x |
=-
| 1 |
| x2-4x+4 |
点评:本题考查了分式的混合运算,熟悉通分、约分是解题的关键.
练习册系列答案
相关题目