题目内容

精英家教网如图,平行四边形中,∠ABC=75°.AF⊥BC于F,AF交BD于E,若DE=2AB,则∠AED=
 
°.
分析:由DE=2AB,可作辅助线:取DE中点O,连接AO,根据平行四边形的对边平行,易得△ADE是直角三角形,由直角三角形斜边上的中线是斜边的一半,即可得△ADO,△AOE,△AOB是等腰三角形,借助于方程求解即可.
解答:精英家教网解:取DE中点O,连接AO,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAB=180°-∠ABC=105°,
∵AF⊥BC,
∴AF⊥AD,
∴∠DAE=90°,
∴OA=
1
2
DE=OD=OE,
∵DE=2AB,
∴OA=AB,
∴∠AOB=∠ABO,∠ADO=∠DAO,∠AED=∠EAO,
∵∠AOB=∠ADO+∠DAO=2∠ADO,
∴∠ABD=∠AOB=2∠ADO,
∴∠ABD+∠ADO+∠DAB=180°,
∴∠ADO=25°,∠AOB=50°,
∴∠AED+∠EAO+∠AOD=180°,
∴∠AED=65°.
故答案为:65°.
点评:此题考查了直角三角形的性质(直角三角形斜边上的中线是斜边的一半)、平行四边形的性质(平行四边形的对边平行)以及等腰三角形的性质(等边对等角),难度较大,解题的关键是注意方程思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网