题目内容
解不等式组:并写出它的整数解.
解:
解不等式①,得x<2,
解不等式②,得x≥-1,
∴-1≤x<2.
∴所求不等式组的整数解为-1,0,1.
计算:2cos 45°-3 +(1-)0=__________.
如图6224,已知:CD为一幢3米高的温室,其南面窗户的底框G距地面1米,CD在地面上留下的最大影长CF为2米,现欲在距C点7米的正南方A点处建一幢12米高的楼房AB(设A,C,F在同一水平线上).
(1)按比例较精确地作出高楼AB及它的最大影长AE;
(2)问若大楼AB建成后是否影响温室CD的采光,试说明理由.
图6224
某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:
[操作发现]
在等腰三角形ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图4247(1),其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论:①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.其中正确的是____________(填序号即可).
[数学思考]
在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图4247(2),M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量和位置关系?请给出证明过程.
[类比探索]
在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图4247(3),M是BC的中点,连接MD和ME,试判断△MED的形状.
答:____________________.
(1) (2) (3)
分解因式:a3b-ab3=______________________.
下列运算正确的是( )
A.a2·a3=a5 B.x3-x=x2
C. =a+b D.(a-1)2=a2-1
某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图J15.根据图形所提供的样本数据,可得学生参加科技活动的频率是____________.
计算:(2013-π)0--2-2sin60°+|-1|.
如图J51,正比例函数y1与反比例函数y2相交于点E(-1,2),则它们的另一个交点坐标是________________.
图J51