题目内容


如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.

求证:AF平分∠BAC.

 


 证明:∵AB=AC(已知),

∴∠ABC=∠ACB(等边对等角).

∵BD、CE分别是高,

∴BD⊥AC,CE⊥AB(高的定义).

∴∠CEB=∠BDC=90°.

∴∠ECB=90°﹣∠ABC,∠DBC=90°﹣∠ACB.

∴∠ECB=∠DBC(等量代换).

∴FB=FC(等角对等边),

在△ABF和△ACF中,

∴△ABF≌△ACF(SSS),

∴∠BAF=∠CAF(全等三角形对应角相等),

∴AF平分∠BAC.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网