题目内容

古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.观察下面的点阵图和相应的等式,探究其中的规律:
(1)下图反映了任何一个三角形数是如何得到的,认真观察,并在④后面的横线上写出相应的等式;

①1=1
②1+2=
(1+2)×2
2
=3
③1+2+3=
(1+3)×3
2
=6
1+2+3+4=
(1+4)×4
2
1+2+3+4=
(1+4)×4
2

(2)通过猜想,写出(1)中与第九个点阵相对应的等式
1+2+3+…+9=
(1+9)×9
2
1+2+3+…+9=
(1+9)×9
2

(3)从下图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.结合(1)观察下列点阵图,并在⑤看面的黄线上写出相应的等式.

①1=12
②1+3=22
③3+6=32
④6+10=42
10+15=52
10+15=52

(4)通过猜想,写出(3)中与第n个点阵相对应的等式
(1+n-1)(n-1)
2
+
(1+n)×n
2
=n2
(1+n-1)(n-1)
2
+
(1+n)×n
2
=n2

(5)判断225是不是正方形数,如果不是,说明理由;如果是,225可以看作哪两个相邻的“三角形数”之和?
分析:(1)根据计算方法写出即可;
(2)根据求解规律,用点阵的序数乘比序数大1的数,再除以2即可;
(3)根据(1)中三角形数的规律写出即可;
(4)用第(n-1)个三角形数加上第n个三角形数,整理即可得解;
(5)把225代入第n个点阵的表达式,计算即可得解.
解答:解:(1)④1+2+3+4=
(1+4)×4
2


(2)第九个点阵相应的等式:1+2+3+…+9=
(1+9)×9
2


(3)⑤10+15=52

(4)第n个点阵相对应的等式:
(1+n-1)(n-1)
2
+
(1+n)×n
2
=n2

(5)∵225=152
∴225是正方形数,
可以看作是14、15两个相邻的三角形数的和.
故答案为:(1)1+2+3+4=
(1+4)×4
2
;(2)1+2+3+…+9=
(1+9)×9
2
;(3)10+15=52;(4)
(1+n-1)(n-1)
2
+
(1+n)×n
2
=n2
点评:本题是对数字变化规律的考查,对图形变化规律的考查,仔细观察图形以及三角形数的定义和求解方法,理解题目信息是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网