题目内容
如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是 _______ .
![]()
考点:
直线与圆的位置关系;勾股定理;垂径定理。
专题:
计算题。
分析:
解决此题首先要弄清楚AB在什么时候最大,什么时候最小.当AB与小圆相切时有一个公共点,此时可知AB最小;当AB经过同心圆的圆心时,弦AB最大且与小圆相交有两个公共点,此时AB最大,由此可以确定所以AB的取值范围.
解答:
![]()
解:如图,当AB与小圆相切时有一个公共点D,
连接OA,OD,可得OD⊥AB,
∴D为AB的中点,即AD=BD,
在Rt△ADO中,OD=3,OA=5,
∴AD=4,
∴AB=2AD=8;
当AB经过同心圆的圆心时,弦AB最大且与小圆相交有两个公共点,
此时AB=10,
所以AB的取值范围是8<AB≤10.
故答案为:8<AB≤10
点评:
此题考查了直线与圆的位置关系,涉及的知识有:垂径定理,勾股定理,以及切线的性质,其中解题的关键是抓住两个关键点:1、当弦AB与小圆相切时最短;2、当AB过圆心O时最长.
练习册系列答案
相关题目
| A、16π | B、36π | C、52π | D、81π |