题目内容
如图,在矩形ABCD中AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么的值是 _________.
一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为( )
A. 1.5 B. 2 C. 2.5 D. 3
如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=__.
【答案】55°.
【解析】试题分析:已知四边形ABCD是平行四边形,由平行四边形的性质可得∠BAD=∠C,再由折叠的性质得∠D1AE=∠C,所以∠D1AE=∠BAD,即可得∠D1AD=∠BAE=55°;
考点:平行四边形的性质;折叠的性质.
【题型】填空题【结束】15
如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_米.(结果精确到0.1米,参考数据: ≈1.41, ≈1.73)
(2017浙江省湖州市,第23题,10分)湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).
(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;
(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为;y与t的函数关系如图所示.
①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;
②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出最大值.(利润=销售总额﹣总成本)
(12分)(2017·黄冈)已知:如图,一次函数y=-2x+1与反比例函数y=的图象有两个交点A(-1,m)和B,过点A作AE⊥x轴,垂足为E;过点B作BD⊥y轴,垂足为点D,且点D的坐标为(0,-2),连结DE.
(1)求k的值;
(2)求四边形AEDB的面积.
以坐标原点为圆心,作半径为2的圆,若直线与相交,则的取值范围是( )
A. B.
C. D.
的算术平方根是( )
A. 2 B. ±2 C. D.
如果方程x+2y=-4,2x-y=7,y-kx+9=0有公共解,则k的解是( )
A. -3 B. 3 C. 6 D. -6
如图,点P在反比例函数(x>0)的图象上,且横坐标为2.若将点P先向右平移两个单位,再向上平移一个单位后所得图象为点P′.则经过点P'的反比例函数图象的解析式是 .