ÌâÄ¿ÄÚÈÝ
Èçͼ¢ÙËùʾ£¬ÔÚÖ±½ÇÌÝÐÎABCDÖУ¬¡ÏBAD=90¡ã£¬EÊÇÖ±ÏßABÉÏÒ»µã£¬¹ýE×÷Ö±Ïßl¡ÎBC£¬½»Ö±ÏßCDÓÚµãF£®½«Ö±ÏßlÏòÓÒÆ½ÒÆ£¬ÉèÆ½ÒÆ¾àÀëBEΪt£¨t¡Ý0£©£¬Ö±½ÇÌÝÐÎABCD±»Ö±Ïßlɨ¹ýµÄÃæ»ý£¨Í¼ÖÐÒõÓ°²¿·Ö£©ÎªS£¬S¹ØÓÚtµÄº¯ÊýͼÏóÈçͼ¢ÚËùʾ£¬OMΪÏ߶Σ¬MNΪÅ×ÎïÏßµÄÒ»²¿·Ö£¬NQΪÉäÏߣ¬Nµãºá×ø±êΪ4£®ÐÅÏ¢¶ÁÈ¡
£¨1£©ÌÝÐÎÉϵ׵ij¤AB=
£¨2£©Ö±½ÇÌÝÐÎABCDµÄÃæ»ý=
ͼÏóÀí½â
£¨3£©Ð´³öͼ¢ÚÖÐÉäÏßNQ±íʾµÄʵ¼ÊÒâÒ壻
£¨4£©µ±2£¼t£¼4ʱ£¬ÇóS¹ØÓÚtµÄº¯Êý¹ØÏµÊ½£»
ÎÊÌâ½â¾ö
£¨5£©µ±tΪºÎֵʱ£¬Ö±Ïßl½«Ö±½ÇÌÝÐÎABCD·Ö³ÉµÄÁ½²¿·ÖÃæ»ýÖ®±ÈΪ1£º3£®
·ÖÎö£º£¨1£©¸ù¾Ýͼ¢Ú¿ÉÖª£¬µ±0¡Üt¡Ü2ʱ£¬EÔÚÏß¶ÎABÉÏÔ˶¯£¨°üÀ¨ÓëA¡¢BÖØºÏ£©£¬ÔÚ´ËÆÚ¼äEµãÔ˶¯ÁË2£¬Òò´Ë¿ÉÇóµÃABµÄ³¤Îª2£®
£¨2£©¸ù¾ÝͼÐοÉÖª£ºµ±2£¼t£¼4ʱ£¬EÔÚABµÄÑÓ³¤ÏßÉÏ£¬ÇÒFÔÚDµã×ó²à£¬´ËÆÚ¼äEµãÔ˶¯ÁË2£¬Òò´Ëϵ׳¤Îª2+2=4£¬¸ù¾Ýt=2ʱ£¬Öغϲ¿·ÖµÄÃæ»ýΪ8¿ÉÇó³öÌÝÐεĸßΪ4£¬Òò´ËÌÝÐεÄÃæ»ýΪ
¡Á£¨2+4£©¡Á4=12£®
£¨3£©µ±t£¾4ʱ£¬Ö±ÏßlÓëÌÝÐÎûÓн»µã£¬Òò´Ëɨ¹ýµÄÃæ»ýºãΪÌÝÐεÄÃæ»ý12£®
£¨4£©µ±2£¼t£¼4ʱ£¬Ö±Ïßɨ¹ýÌÝÐεIJ¿·ÖÊǸöÎå±ßÐΣ¬Èç¹ûÉèÖ±ÏßlÓëADµÄ½»µãΪ0£¬ÄÇÃ´ÖØºÏ²¿·ÖµÄÃæ»ý¿ÉÓÃÌÝÐεÄÃæ»ý¼õÈ¥Èý½ÇÐÎOFDµÄÃæ»ýÀ´ÇóµÃ£®ÌÝÐεÄÃæ»ýÔÚ£¨2£©ÖÐÒѾÇóµÃ£®Èý½ÇÐÎOFDÖУ¬µ×±ßDF=4-t£¬¶øDFÉϵĸߣ¬¿ÉÓÃDFµÄ³¤ºÍ¡ÏBCDµÄÕýÇÐÖµÇó³ö£¬Óɴ˿ɵóöS£¬tµÄº¯Êý¹ØÏµÊ½£®
£¨5£©±¾ÌâÒª·ÖÇé¿öÌÖÂÛ£º
¢Ùµ±0£¼t£¼2ʱ£¬Öغϲ¿·ÖµÄƽÐÐËıßÐεÄÃæ»ý£ºÖ±½ÇÌÝÐÎAEFDµÄÃæ»ý=1£º3£¬¾Ý´Ë¿ÉÇó³ötµÄÖµ£®
¢Úµ±2£¼t£¼4ʱ£¬Öغϲ¿·ÖµÄÎå±ßÐεÄÃæ»ý£ºÈý½ÇÐÎOFDµÄÃæ»ý=3£º1£¬ÓÉ´Ë¿ÉÇó³ötµÄÖµ£®
£¨2£©¸ù¾ÝͼÐοÉÖª£ºµ±2£¼t£¼4ʱ£¬EÔÚABµÄÑÓ³¤ÏßÉÏ£¬ÇÒFÔÚDµã×ó²à£¬´ËÆÚ¼äEµãÔ˶¯ÁË2£¬Òò´Ëϵ׳¤Îª2+2=4£¬¸ù¾Ýt=2ʱ£¬Öغϲ¿·ÖµÄÃæ»ýΪ8¿ÉÇó³öÌÝÐεĸßΪ4£¬Òò´ËÌÝÐεÄÃæ»ýΪ
| 1 |
| 2 |
£¨3£©µ±t£¾4ʱ£¬Ö±ÏßlÓëÌÝÐÎûÓн»µã£¬Òò´Ëɨ¹ýµÄÃæ»ýºãΪÌÝÐεÄÃæ»ý12£®
£¨4£©µ±2£¼t£¼4ʱ£¬Ö±Ïßɨ¹ýÌÝÐεIJ¿·ÖÊǸöÎå±ßÐΣ¬Èç¹ûÉèÖ±ÏßlÓëADµÄ½»µãΪ0£¬ÄÇÃ´ÖØºÏ²¿·ÖµÄÃæ»ý¿ÉÓÃÌÝÐεÄÃæ»ý¼õÈ¥Èý½ÇÐÎOFDµÄÃæ»ýÀ´ÇóµÃ£®ÌÝÐεÄÃæ»ýÔÚ£¨2£©ÖÐÒѾÇóµÃ£®Èý½ÇÐÎOFDÖУ¬µ×±ßDF=4-t£¬¶øDFÉϵĸߣ¬¿ÉÓÃDFµÄ³¤ºÍ¡ÏBCDµÄÕýÇÐÖµÇó³ö£¬Óɴ˿ɵóöS£¬tµÄº¯Êý¹ØÏµÊ½£®
£¨5£©±¾ÌâÒª·ÖÇé¿öÌÖÂÛ£º
¢Ùµ±0£¼t£¼2ʱ£¬Öغϲ¿·ÖµÄƽÐÐËıßÐεÄÃæ»ý£ºÖ±½ÇÌÝÐÎAEFDµÄÃæ»ý=1£º3£¬¾Ý´Ë¿ÉÇó³ötµÄÖµ£®
¢Úµ±2£¼t£¼4ʱ£¬Öغϲ¿·ÖµÄÎå±ßÐεÄÃæ»ý£ºÈý½ÇÐÎOFDµÄÃæ»ý=3£º1£¬ÓÉ´Ë¿ÉÇó³ötµÄÖµ£®
½â´ð£º½â£ºÓÉÌâÒâµÃ£º
£¨1£©AB=2£®
£¨2£©SÌÝÐÎABCD=12£®
£¨3£©µ±Æ½ÒƾàÀëBE´óÓÚµÈÓÚ4ʱ£¬Ö±½ÇÌÝÐÎABCD±»Ö±Ïßlɨ¹ýµÄÃæ»ýºãΪ12£®
£¨4£©µ±2£¼t£¼4ʱ£¬ÈçͼËùʾ£¬
Ö±½ÇÌÝÐÎABCD±»Ö±Ïßlɨ¹ýµÄÃæ»ýS=SÖ±½ÇÌÝÐÎABCD-SRt¡÷DOF
=12-
£¨4-t£©¡Á2£¨4-t£©=-t2+8t-4£®
£¨5£©¢Ùµ±0£¼t£¼2ʱ£¬ÓÐ4t£º£¨12-4t£©=1£º3£¬½âµÃt=
£®
¢Úµ±2£¼t£¼4ʱ£¬ÓУ¨-t2+8t-4£©£º[12-£¨-t2+8t-4£©]=3£º1£¬
¼´t2-8t+13=0£¬
½âµÃt=4-
£¬t=4+
£¨ÉáÈ¥£©£®
´ð£ºµ±t=
»òt=4-
ʱ£¬Ö±Ïßl½«Ö±½ÇÌÝÐÎABCD·Ö³ÉµÄÁ½²¿·ÖÃæ»ýÖ®±ÈΪ1£º3£®
£¨1£©AB=2£®
£¨2£©SÌÝÐÎABCD=12£®
£¨3£©µ±Æ½ÒƾàÀëBE´óÓÚµÈÓÚ4ʱ£¬Ö±½ÇÌÝÐÎABCD±»Ö±Ïßlɨ¹ýµÄÃæ»ýºãΪ12£®
£¨4£©µ±2£¼t£¼4ʱ£¬ÈçͼËùʾ£¬
Ö±½ÇÌÝÐÎABCD±»Ö±Ïßlɨ¹ýµÄÃæ»ýS=SÖ±½ÇÌÝÐÎABCD-SRt¡÷DOF
=12-
| 1 |
| 2 |
£¨5£©¢Ùµ±0£¼t£¼2ʱ£¬ÓÐ4t£º£¨12-4t£©=1£º3£¬½âµÃt=
| 3 |
| 4 |
¢Úµ±2£¼t£¼4ʱ£¬ÓУ¨-t2+8t-4£©£º[12-£¨-t2+8t-4£©]=3£º1£¬
¼´t2-8t+13=0£¬
½âµÃt=4-
| 3 |
| 3 |
´ð£ºµ±t=
| 3 |
| 4 |
| 3 |
µãÆÀ£º±¾ÌâÊÇÔ˶¯ÐÍÎÊÌ⣬¿¼²éÁËÖ±½ÇÌÝÐÎºÍÆ½ÐÐËıßÐεÄÐÔÖÊ¡¢Í¼ÐÎÃæ»ýµÄÇó·¨ÒÔ¼°¶þ´Îº¯ÊýµÄ×ÛºÏÓ¦ÓõÈ֪ʶ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
| 1 |
| 2 |
| A¡¢0¸ö | B¡¢1¸ö | C¡¢2¸ö | D¡¢3¸ö |