题目内容

如图,△ABC内接于⊙O,点E是⊙O外一点,EO⊥BC于点D.
求证:∠1=∠E.
证明:

证明:延长CO交⊙O于点F,连接AF,
∵CF是直径
∴∠FAC=90°,∴∠F+∠1=90°,
∵EO⊥BC,∴∠EDB=90°
∴∠B+∠E=90°,
∵∠F=∠B,
∴∠1=∠E.
分析:首先延长CO交⊙O于点F,连接AF,利用圆周角定理得出∠FAC=90°,以及∠F=∠B即可得出答案.
点评:此题主要考查了圆周角定理以及三角形内角和定理,根据已知作出辅助线得出∠EDB=90°是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网