题目内容
在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.
(1)求证:△BEC≌△DEC;
(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.
![]()
(1)证明:∵四边形ABCD是正方形,
∴BC=CD,∠ECB=∠ECD=45°.
∴在△BEC与△DEC中,
![]()
∴△BEC≌△DEC(SAS).
(2)解:∵△BEC≌△DEC,
∴∠BEC=∠DEC=
∠BED.
∵∠BED=120°,∴∠BEC=60°=∠AEF.
∴∠EFD=60°+45°=105°.
练习册系列答案
相关题目