搜索
题目内容
若△ABC的边长为a、b、c且满足等式a
2
+b
2
+c
2
=ab+bc+ac,则△ABC的形状一定是
A.
Rt△
B.
等腰Rt△
C.
钝角△
D.
正△
试题答案
相关练习册答案
D
练习册系列答案
西城学科专项测试系列答案
小考必做系列答案
小考实战系列答案
小考复习精要系列答案
小考总动员系列答案
小升初必备冲刺48天系列答案
68所名校图书小升初高分夺冠真卷系列答案
伴你成长周周练月月测系列答案
小升初金卷导练系列答案
萌齐小升初强化模拟训练系列答案
相关题目
29、如图1,△ABC是正三角形,△BDC是等腰三角形,BD=CD,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.
(1)探究BM、MN、NC之间的关系,并说明理由;
(2)若△ABC的边长为2,求△AMN的周长;
(3)若点M、N分别是线段AB、CA延长线上的点,其他条件不变,此时(1)中的结论是否还成立,在图2中画出图形,并说明理由.
23、若△ABC的边长为a、b、c,且满足a
2
+b
2
+c
2
=ab+bc+ca,则△ABC的形状是( )
A、等腰三角形
B、等边三角形
C、任意三角形
D、不能确定
如图,△ABC为等边三角形,D,E分别是边AC,BC上的点(不与顶点重合),∠BDE=60°,若△ABC的边长为6,设DC=x,BE=y,则y与x之间的函数关系式是( )
A.
y=-
1
6
x
2
-x+6
B.
y=-
1
6
x
2
+x+6
C.
y=
1
6
x
2
-x+6
D.
y=
1
6
x
2
-x-6
数学课上,李老师出示了如下框中的题目.
小明与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论
当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE
=
=
DB(填“>”,“<”或“=”).
(2)一般情况,证明结论:
如图2,过点E作EF∥BC,交AC于点F.(请你继续完成对以上问题(1)中所填写结论的证明)
(3)拓展结论,设计新题:
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC. 若△ABC的边长为1,AE=2,则CD的长为
1或3
1或3
(请直接写出结果).
如图,△ABC是等边三角形,D为AB边上的一个动点,DE∥BC,延长BC到F,使CF=AD,连接DF交AC于P.
(1)求证:EP=CP;
(2)若△ABC的边长为a,CF长为b,且a、b满足
(a-5
)
2
+
b-3
=0
,求CP长;
(3)若△ABC的边长为5,设CF=x,CP=y,求y与x间的函数关系式,并写出自变量x的取值范围.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案