题目内容
4.(1)若D为AC的中点,证明DE是⊙O的切线;
(2)若OA=$\sqrt{3}$,CE=1,求△ABC的面积.
分析 (1)连接AE,OE,∠AEB=90°,∠BAC=90°,在Rt△ACE中,D为AC的中点,则DE=AD=CD=$\frac{1}{2}$AC,得出∠DEA=∠DAE,由OA=OE,得出∠OAE=∠OEA,则∠DEO=∠DEA+∠OEA=∠DAE+∠OAE=∠BAC=90°,即可得出结论;
(2)AB=2AO=2$\sqrt{3}$,由△BCA∽△BAE,得出$\frac{BC}{AB}$=$\frac{AB}{BE}$,求出BE=3,BC=4,由勾股定理得AC=$\sqrt{B{C}^{2}-A{B}^{2}}$=2,则S△ABC=$\frac{1}{2}$AB•AC代入即可得出结果.
解答 (1)证明:连接AE,OE,如图所示:![]()
∵AB是⊙O的直径,
∴∠AEB=90°,
∵AC是⊙O的切线,
∴∠BAC=90°,
∵在Rt△ACE中,D为AC的中点,
∴DE=AD=CD=$\frac{1}{2}$AC,
∴∠DEA=∠DAE,
∵OA=OE,
∴∠OAE=∠OEA,
∴∠DEO=∠DEA+∠OEA=∠DAE+∠OAE=∠BAC=90°,
∴OE⊥DE,
∵OE为半径,
∴DE是⊙O的切线;
(2)解:∵AO=$\sqrt{3}$,
∴AB=2AO=2$\sqrt{3}$,
∵∠CAB=∠AEB=90°,∠B=∠B,
∴△BCA∽△BAE,
∴$\frac{BC}{AB}$=$\frac{AB}{BE}$,即AB2=BE•BC=BE(BE+EC),
∴(2$\sqrt{3}$)2=BE2+BE,
解得:BE=3或BE=-4(不合题意,舍去),
∴BE=3,
∴BC=BE+CE=3+1=4,
∴在Rt△ABC中,AC=$\sqrt{B{C}^{2}-A{B}^{2}}$=$\sqrt{{4}^{2}-(2\sqrt{3})^{2}}$=2,
∴S△ABC=$\frac{1}{2}$AB•AC=$\frac{1}{2}$×2$\sqrt{3}$×2=2$\sqrt{3}$.
点评 本题考查了切线的判定与性质、直角三角形斜边上的中线性质、勾股定理、相似三角形的判定与性质、等腰三角形的性质、圆周角定理等知识;本题综合性强,有一定难度.
| A. | 三角形的三条高都在三角形内部 | |
| B. | 三角形的三条中线交于一点 | |
| C. | 三角形不一定具有稳定性 | |
| D. | 三角形的角平分线可能在三角形的内部或外部 |
| A. | (-3,4) | B. | (4,-3) | C. | (-4,3) | D. | (3,-4) |