搜索
题目内容
如图9,将
Rt
△
AOB
绕点直角顶点
O
旋转得到
Rt
△
COD
,若∠
BOC
=
,则∠
AOD
度数为
A.
B.
C.
D.
试题答案
相关练习册答案
D
练习册系列答案
假期总动员寒假作业假期最佳复习计划系列答案
庠序文化中考必备中考试题汇编系列答案
扬帆文化激活思维小学互动英语系列答案
人民东方书业25套试卷汇编系列答案
名师解密满分特训方案系列答案
学业考试初中总复习风向标系列答案
领扬中考中考总复习系列答案
一诺书业寒假作业快乐假期系列答案
开心寒假作业年度复习方案系列答案
阳光试卷中考总复习试卷系列答案
相关题目
16、如图,在等腰Rt△ABC中,∠A=90°,AC=9,点O在AC上,且AO=2,点P是AB上一动点,连接OP将线段OP绕O逆时针旋转90°得到线段OD,要使点D恰好落在BC上,则AP的长度等于
5
.
(2012•闸北区一模)已知:如图1,在Rt△OAC中,AO⊥OC,点B在OC边上,OB=6,BC=12,∠ABO+∠C=90°.动点M和N分别在线段AB和AC边上.
(l)求证△AOB∽△COA,并求cosC的值;
(2)当AM=4时,△AMN与△ABC相似,求△AMN与△ABC的面积之比;
(3)如图2,当MN∥BC时,将△AMN沿MN折叠,点A落在四边形BCNM所在平面的点为点E.设MN=x,△EMN与四边形BCNM重叠部分的面积为y,试写出y关于x的函数关系式,并写出自变量x的取值范围.
(2011•辽阳)如图,已知Rt△ABO,∠BAO=90°,以点O为坐标原点,OA所在直线为y轴,建立平面直角坐标系,AO=3,∠AOB=30°,将Rt△ABO沿OB翻折后,点A落在第一象限内的点D处.
(1)求D点坐标;
(2)若抛物线y=ax
2
+bx+3(a≠0)经过B、D两点,求此抛物线的表达式;
(3)若抛物线的顶点为E,它的对称轴与OB交于点F,点P为射线OB上一动点,过点P作y轴的平行线,交抛物线于点M.是否存在点P,使得以E、F、M、P为顶点的四边形为等腰
梯形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
参考公式:抛物线y=ax
2
+bx+c(a≠0)的顶点坐标是(-
b
2a
,
4ac-
b
2
4a
).
如图1,已知AO是等腰Rt△ABC的角平分线,∠BAC=90°,AB=AC.
(1)在图1中,∠AOC的度数为
90°
90°
;与线段BO相等的线段为
CO和AO
CO和AO
;
(2)将图1中的△AOC绕点O顺时针旋转得到△A
1
OC
1
,如图2,连接AA
1
,BC
1
,试判断S
△AOA1
与S
△BOC1
的大小关系?并给出你的证明;
(3)将图1中的△ABO绕点B顺时针旋转得到△MBN,如图3,点P为MC的中点,连接PA、PN,求证:PA=PN.
如图1,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x-4经过等腰Rt△AOB直角顶点A,交y轴于C点,双曲线y=
k
x
(x>0)也恰好经过点A.
(1)求k的值;
(2)如图2,过点O作OD⊥AC于D,求CD
2
-AD
2
的值;
(3)如图3,将△AOB绕点A逆时针旋转,射线AO交x轴正半轴于点P,射线AB交(1)中双曲线上于点Q,△PAQ能否成为以A为直角顶点的等腰直角三角形?若能,求点P,Q的坐标;若不能,请说明理由.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案