题目内容
5
.分析:过点D作DE⊥AC于E,则△DEO≌△OAP,根据全等三角形及等腰直角三角形的性质即可求解.
解答:
解:过点D作DE⊥AC于E,则△DEO≌△OAP,
∴DE=OA=CE=2,
∴AP=OE=9-4=5.
∴DE=OA=CE=2,
∴AP=OE=9-4=5.
点评:本题考查旋转的性质和等腰三角形,直角三角形的性质以及全等三角形性质的运用.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.
练习册系列答案
相关题目
①△DFE是等腰直角三角形;
②四边形CDFE不可能为正方形,
③DE长度的最小值为4;
④四边形CDFE的面积保持不变;
⑤△CDE面积的最大值为8.
其中正确的结论是( )
| A、①②③ | B、①④⑤ | C、①③④ | D、③④⑤ |