题目内容
如图,已知在平面直角坐标系xoy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B.
(1)求k和b的值;
(2)求△OAB的面积.
如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径,AC=2,则cosB的值是( )
A.
B.
C.
D.
如图1,在菱形ABCD中,ABC=60°,若点E在AB的延长线上,EF∥AD,EF=BE,点P是DE的中点,连接FP并延长交AD于点G.
(1)过D作DHAB,垂足为H,若DH=,BE=AB,求DG的长;
(2)连接CP,求证:CPFP;
(3)如图2,在菱形ABCD中,ABC=60°,若点E在CB的延长线上运动,点F在AB的延长线上运动,且BE=BF,连接DE,点P为DE的中点,连接FP、CP,那么第(2)问的结论成立吗?若成立,求出的值;若不成立,请说明理由.
如图,在平行四边形ABCD中,BC=7,CE平分∠BCD交AD边于点E,且AE=4,则AB的长为( )
A.2 B. C.3 D.4
在、、、四个数中最小的数是( )
A. B. C. D.
已知函数y=k-2x-k-2的图象与坐标轴有两个交点,则k的值为 .
某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x,那么x满足的方程是 ( )
A.100=81 B.100=81
C.100(1-2x)=81 D.100=81
二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=与y=bx+c在同一直角坐标系内的大致图象是( )
如图,⊙P经过点A(0,)O(0,0)B(1,0),点C在第一象限的上,则∠BCO的度数为( )
A.15° B.30° C.45° D.60°