题目内容
在,0,﹣1,﹣这四个数中,最小的数是( )
A. B. 0 C. ﹣ D. ﹣1
D.
已知函数y = 的图象在第一象限的一支曲线上有一点A(a,c),点B(b,c+1)在该函数图象的另外一支上,则关于一元二次方程ax2+bx+c = 0的两根x1,x2判断正确的是
A.x1 + x2 >1,x1·x2 > 0 B.x1 + x2 < 0,x1·x2 > 0
C.0 < x1 + x2 < 1,x1·x2 > 0 D.x1 + x2与x1·x2 的符号都不确定
如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,则∠B的度数为( )
A. 80° B. 40° C. 60° D. 50°
如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式,(a+b)4= .
如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角为30°,求坝底AD的长度.(精确到0.1米,参考数据:≈1.414,≈1.732.提示:坡度等于坡面的铅垂高度与水平长度之比)°.
下列四个图形:
其中是轴对称图形,且对称轴的条数为2的图形的个数是( )
A. 1 B. 2 C. 3 D. 4
某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是( )
A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15
C. (x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=15
下列实数中,是无理数的为
A.-1 B. C. D.3.14
如图,在菱形中,,.则菱形的面积 .