题目内容
13.| A. | 25° | B. | 30° | C. | 35° | D. | 40° |
分析 首先设∠ACE=x°,∠DCE=y°,∠BCD=z°,由BE=BC,AD=AC,利用等腰三角形的性质,即可用x,y,z表示出∠ADC与∠BEC的度数,又由三角形外角的性质,得到∠A与∠B的值,然后由在△ABC中,∠ACB=100°,利用三角形内角和定理得到方程,继而求得∠DCE的大小.
解答 解:设∠ACE=x°,∠DCE=y°,∠BCD=z°,
∵BE=BC,AD=AC,
∴∠ADC=∠ACD=∠ACE+∠DCE=(x+y)°,∠BEC=∠BCE=∠BCD+∠DCE=(y+z)°,
∴∠A=∠BEC-∠ACE=(y+z-x)°,∠B=∠ADC-∠BCD=(x+y-z)°,
∵在△ABC中,∠ACB=100°,
∴∠A+∠B=180°-∠ACB=80°,
∴y+z-x+x+y-z=80,
即2y=80,
∴y=40,
∴∠DCE=40°.
故选D.
点评 本题考查了等腰三角形的性质、三角形内角和定理以及三角形外角的性质.此题难度适中,解答此题的关键是建立起各角之间的关系,结合图形列出方程进行解答.
练习册系列答案
相关题目
18.已知一个直角三角形的两条直角边长恰好是方程x2-14x+48=0的两根,则此三角形的斜边长为( )
| A. | 6 | B. | 8 | C. | 10 | D. | 14 |