题目内容
如图,某河的两岸PQ、MN互相平行,河岸PQ上的点A处和点B处各有一棵大树,AB=30米,某人在河岸MN上选一点C,AC⊥MN,在直线MN上从点C前进一段路程到达点D,测得∠ADC=30°,∠BDC=60°,求这条河的宽度.(
≈1.732,结果保留三个有效数字).

设河的宽度为x,
在Rt△ACD中,
∵AC⊥MN,CE=AB=30米,∠ADC=30°,
∴
在Rt△BED中,
①②联立得,x=15
答:这条河的宽度为26.0米.
分析:过点B作BE⊥MN于点E,则CE=AB=30米,CD=CE+ED,AC=BE,在Rt△ACD中,由锐角三角函数的定义可知,
点评:本题考查的是解直角三角形的应用-方向角问题,根据题意作出辅助线,利用锐角三角函数的定义求解是解答此题的关键.
练习册系列答案
相关题目