ÌâÄ¿ÄÚÈÝ
14£®£¨1£©ÊÔÈ·¶¨ÉÏÊö±ÈÀýº¯ÊýºÍ·´±ÈÀýº¯ÊýµÄ±í´ïʽ£»
£¨2£©¸ù¾ÝͼÏ󻨴ð£¬ÔÚµÚÒ»ÏóÏÞÄÚ£¬µ±xÈ¡ºÎֵʱ£¬·´±ÈÀýº¯ÊýµÄÖµ´óÓÚÕý±ÈÀýº¯ÊýµÄÖµ£¿
£¨3£©µãD£¨m£¬n£©ÊÇ·´±ÈÀýº¯ÊýͼÏóÉϵÄÒ»¶¯µã£¬ÆäÖÐ0£¼m£¼3£¬¹ýµãC×÷Ö±ÏßAC¡ÍxÖáÓÚµãA£¬½»ODµÄÑÓ³¤ÏßÓÚµãB£»ÈôµãDÊÇOBµÄÖе㣬DE¡ÍxÖáÓÚµãE£¬½»OCÓÚµãF£¬ÊÔÇóËıßÐÎDFCBµÄÃæ»ý£®
·ÖÎö £¨1£©½«µãC£¨3£¬1£©·Ö±ð´úÈëy=$\frac{k}{x}$ºÍy=axÇóµÃk¡¢a¼´¿ÉµÃ£»
£¨2£©¸ù¾ÝͼÏóÕÒµ½·´±ÈÀýº¯ÊýͼÏóÔÚÕý±ÈÀýº¯ÊýͼÏóÉÏ·½¶ÔÓ¦µÄxµÄȡֵ·¶Î§£»
£¨3£©¸ù¾ÝµãDΪOBÖе㡢ÓÖÔÚ·´±ÈÀýº¯ÊýÉÏ£¬½áºÏDE¡ÍOAÀûÓÃÖÐλÏß¶¨Àí¿ÉµÃµãD¡¢B×ø±ê£¬ÔÙÇóµÃµãF×ø±ê£¬´Ó¶øµÃDF=$\frac{3}{2}$¡¢BC=3¡¢EA=$\frac{3}{2}$£¬¾Ý´Ë¿ÉµÃ´ð°¸£®
½â´ð ½â£º£¨1£©½«µãC£¨3£¬1£©·Ö±ð´úÈëy=$\frac{k}{x}$ºÍy=ax£¬µÃ£ºk=3£¬a=$\frac{1}{3}$£¬
¡à·´±ÈÀýº¯Êý½âÎöʽΪy=$\frac{3}{x}$£¬Õý±ÈÀýº¯Êý½âÎöʽΪy=$\frac{1}{3}$x£»
£¨2£©¹Û²ìͼÏó¿ÉÖª£¬ÔÚµÚ¶þÏóÏÞÄÚ£¬µ±0£¼x£¼3ʱ£¬·´±ÈÀýº¯ÊýÖµ´óÓÚÕý±ÈÀýº¯ÊýÖµ£»
£¨3£©¡ßµãD£¨m£¬n£©ÊÇOBµÄÖе㣬ÓÖÔÚ·´±ÈÀýº¯Êýy=$\frac{3}{x}$ÉÏ£¬
¡àOE=$\frac{1}{2}$OA=$\frac{3}{2}$£¬µãD£¨$\frac{3}{2}$£¬2£©£¬
¡àµãB£¨3£¬4£©£¬
ÓÖ¡ßµãFÔÚÕý±ÈÀýº¯Êýy=$\frac{1}{3}$xͼÏóÉÏ£¬
¡àF£¨$\frac{3}{2}$£¬$\frac{1}{2}$£©£¬
¡àDF=$\frac{3}{2}$¡¢BC=3¡¢EA=$\frac{3}{2}$£¬
¡àËıßÐÎDFCBµÄÃæ»ýΪ$\frac{1}{2}$¡Á£¨$\frac{3}{2}$+3£©¡Á$\frac{3}{2}$=$\frac{27}{8}$£®
µãÆÀ ´ËÌ⿼²éÁËÒ»´Îº¯ÊýÓë·´±ÈÀýº¯ÊýµÄ½»µãÎÊÌ⣬ÀûÓÃÁË´ý¶¨ÏµÊý·¨£¬´ý¶¨ÏµÊý·¨ÊÇÊýѧÖÐÖØÒªµÄ˼Ïë·½·¨£¬Ñ§Éú×¢ÒâÁé»îÔËÓã®
| A£® | 3 | B£® | 0 | C£® | $\sqrt{2}$ | D£® | -4 |
| A£® | x2+8x+16 | B£® | x2+8x+8 | C£® | x2+16 | D£® | x2-4x+16 |