题目内容
一个多边形的边数每增加一条,这个多边形的( )
A. 内角和增加360° B. 外角和增加360°
C. 对角线增加一条 D. 内角和增加180°
如图所示的图案是一些汽车的车标,可以看作由“基本图案”经过平移得到的是( )
A. B. C. D.
如图,已知点A在反比例函数y=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为( )
A. y= B. y= C. y= D. y=﹣
已知时,多项式的值为-1,则时,则多项式的值为______.
已知则=_______.
如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.
(1)求证:PD是⊙O的切线;
(2)求证:△PBD∽△DCA;
(3)当AB=6,AC=8时,求线段PB的长.
计算:
如图,抛物线T1:y=-x2-2x+3,T2:y=x2-2x+5,其中抛物线T1与x 轴交于A、B两点,与y轴交于C点.P点是x轴上一个动点,过P点并且垂直于x轴的直线与抛物线T1和T2分别相交于N、M两点.设P点的横坐标为t.
(1)用含t的代数式表示线段MN的长;当t为何值时,线段MN有最小值,并求出此最小值;
(2)随着P点运动,P、M、N三点的位置也发生变化.问当t何值时,其中一点是另外两点连接线段的中点?
(3)将抛物线T1平移, A点的对应点为A'(m-3,n),其中≤m≤,且平移后的抛物线仍经过C点,求平移后抛物线顶点所能达到的最高点的坐标.
如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2)、B(1,﹣2)两点,若y1<y2,则x的取值范围是( )
A. x<﹣1或x>1 B. x<﹣1或0<x<1
C. ﹣1<x<0或0<x<1 D. ﹣1<x<0或x>1