题目内容
(1)分解因式:x7+x5+1
(2)对任何正数t,证明:t4-t+
>0.
(2)对任何正数t,证明:t4-t+
| 1 | 2 |
分析:(1)首先把因式添项x6再减去x6,然后因式分解,再提取公因式即可,
(2)根据题干t4-t+
=(t4-t2+
)+(t2-t+
)可知,两个完全平方式不可能小于0,结论可证.
(2)根据题干t4-t+
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
解答:解:(1)x7+x5+1=x7+x6+x5-x6+1
=x5(x2+x+1)-(x3+1)(x3-1)
=(x2+x+1)[x5-(x-1)(x3+1)]
=(x2+x+1)(x5-x4+x3-x+1),
(2)t4-t+
=(t4-t2+
)+(t2-t+
)
=(t2-
)2+(t-
)2≥0
因为(t2-
)2与(t-
)2不可能同时为0,故等于不成立,因此有:t4-t+
>0.
=x5(x2+x+1)-(x3+1)(x3-1)
=(x2+x+1)[x5-(x-1)(x3+1)]
=(x2+x+1)(x5-x4+x3-x+1),
(2)t4-t+
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
=(t2-
| 1 |
| 2 |
| 1 |
| 2 |
因为(t2-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
点评:本题主要考查拆项、添项、配方、待定系数法和完全平方式的知识点,解答本题的关键是熟练运用拆项和添项解决问题的方法,此题难度较大.
练习册系列答案
相关题目