题目内容

已知:如图所示,在锐角∠MAN的边AN上取一点B,以AB为直径的半圆O交AM于C,交∠MAN的角平分线于E,过点E作ED⊥AM,垂足为D,反向延长ED交AN于F。
(1)猜想ED与⊙O的位置关系,并说明理由;
(2)若cos∠MAN=,AE=,求阴影部分的面积。

证明:(1)DE与⊙O相切,
理由如下:连结OE,
∵AE平分∠MAN,
∴∠1=∠2,
∵OA=OE,
∴∠2=∠3,
∴∠1=∠3,
∴OE∥AD,
∴∠OEF=∠ADF=90°,
即OE⊥DE,垂足为E,
又∵点E在半圆O上,
∴ED与⊙O相切;
(2)∵cos∠MAN=
∴∠MAN=60°,
∴∠2=∠MAN=×60°=30°,∠AFD=90°-∠MAN=90°-60°=30°,
∴∠2=∠AFD,
∴EF=AE=
在Rt△OEF中,tan∠OFE=
∴tan30°=
∴OE=1,
∵∠4=∠MAN=60°,
∴S=

=
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网