题目内容
如图,在△ABC中,AD是BC上的高,tanB=cos∠DAC.
(1)求证:AC=BD;
(2)若sin∠C=,BC=12,求AD的长.
如图,在△ABC中,AB=AC,BG⊥AC于G,DE⊥AB于E,DF⊥AC于F.
(1)在图(1)中,D是BC边上的中点,判断DE+DF和BG的关系,并说明理由.
(2)在图(2)中,D是线段BC上的任意一点,DE+DF和BG的关系是否仍然成立?如果成立,证明你的结论;如果不成立,请说明理由.
(3)在图(3)中,D是线段BC延长线上的点,探究DE、DF与BG的关系.(不要求证明,直接写出结果)
在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为( )
A. 42 B. 32 C. 42或32 D. 37或33
如图所示,在□ABCD中,E,F分别为AB,DC的中点,连接DE,EF,FB,则图中共有_____个平行四边形.
下列条件中,不能判定一个四边形为平行四边形的是( )
A. 两组对边分别平行 B. 两组对边分别相等
C. 一组对边平行,一组对边相等 D. 两条对角线互相平分
如图,已知正方形ABCD的对角线交于O点,点E,F分别是AO,CO的中点,连接BE,BF,DE,DF,则下列结论中一定成立的是________.(把所有正确结论的序号都填在横线上)
①BF=DE;②∠ABO=2∠ABE;③S△AED=S△ACD;④四边形BFDE是菱形.
(2013年四川自贡4分)如图,点O是正六边形的对称中心,如果用一副三角板的角,借助点O(使该角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能取值的个数是【 】
A.4 B.5 C.6 D.7
已知菱形A1B1C1D1的边长为2,且∠A1B1C1=60°,对角线A1C1,B1D1相较于点O,以点O为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的直角坐标系,以B1D1为对角线作菱形B1C2D1A2 ,使得∠B1A2D1=60°;再以A2C2为对角线作菱形A2B2C2D2,使得∠A2B2C2=60°;再以B2D2为对角线作菱形B2C3D2A3,使得∠B2A3D2=60°…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,An,则点A2018的坐标为______.
下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图
形的是( )
A. B. C. D.