题目内容
如图,分别过点Pi(i,0)(i=1、2、…、n)作x轴的垂线,交
【答案】分析:根据函数图象上的坐标的特征求得A1(1,
)、A2(2,2)、A3(3,
)…An(n,
n2);B1(1,-
)、B2(2,-1)、B3(3,-
)…Bn(n,-
);然后由两点间的距离公式求得A1B1=|
-(-
)|=1,A2B2=|2-(-1)|=3,A3B3=|
-(-
)|=6,…AnBn=|
n2-(-
)|=
;最后将其代入
求值即可.
解答:解:根据题意,知A1、A2、A3、…An的点都在函与直线x=i(i=1、2、…、n)的图象上,
B1、B2、B3、…Bn的点都在直线
与直线x=i(i=1、2、…、n)图象上,
∴A1(1,
)、A2(2,2)、A3(3,
)…An(n,
n2);
B1(1,-
)、B2(2,-1)、B3(3,-
)…Bn(n,-
);
∴A1B1=|
-(-
)|=1,
A2B2=|2-(-1)|=3,
A3B3=|
-(-
)|=6,
…
AnBn=|
n2-(-
)|=
;
∴
=1,
=
,
…
=
.
∴
,
=1+
+
…+
,
=2[
+
+
+…+
],
=2(1-
+
-
+
-
+…+
-
),
=2(1-
),
=
.
故答案为:
.
点评:本题考查了二次函数的综合题.解答此题的难点是求
=1+
+
…+
的值.在解时,采取了“裂项法”来求该数列的和.
解答:解:根据题意,知A1、A2、A3、…An的点都在函与直线x=i(i=1、2、…、n)的图象上,
B1、B2、B3、…Bn的点都在直线
∴A1(1,
B1(1,-
∴A1B1=|
A2B2=|2-(-1)|=3,
A3B3=|
…
AnBn=|
∴
…
∴
=1+
=2[
=2(1-
=2(1-
=
故答案为:
点评:本题考查了二次函数的综合题.解答此题的难点是求
练习册系列答案
相关题目