题目内容
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| A1B1 |
| 1 |
| A2B2 |
| 1 |
| AnBn |
分析:根据函数图象上的坐标的特征求得A1(1,
)、A2(2,2)、A3(3,
)…An(n,
n2);B1(1,-
)、B2(2,-1)、B3(3,-
)…Bn(n,-
);然后由两点间的距离公式求得A1B1=|
-(-
)|=1,A2B2=|2-(-1)|=3,A3B3=|
-(-
)|=6,…AnBn=|
n2-(-
)|=
;最后将其代入
+
+…+
求值即可.
| 1 |
| 2 |
| 9 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| n |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 9 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| n |
| 2 |
| n(n+1) |
| 2 |
| 1 |
| A1B1 |
| 1 |
| A2B2 |
| 1 |
| AnBn |
解答:解:根据题意,知A1、A2、A3、…An的点都在函与直线x=i(i=1、2、…、n)的图象上,
B1、B2、B3、…Bn的点都在直线y=-
x与直线x=i(i=1、2、…、n)图象上,
∴A1(1,
)、A2(2,2)、A3(3,
)…An(n,
n2);
B1(1,-
)、B2(2,-1)、B3(3,-
)…Bn(n,-
);
∴A1B1=|
-(-
)|=1,
A2B2=|2-(-1)|=3,
A3B3=|
-(-
)|=6,
…
AnBn=|
n2-(-
)|=
;
∴
=1,
=
,
…
=
.
∴
+
+…+
,
=1+
+
…+
,
=2[
+
+
+…+
],
=2(1-
+
-
+
-
+…+
-
),
=2(1-
),
=
.
故答案为:
.
B1、B2、B3、…Bn的点都在直线y=-
| 1 |
| 2 |
∴A1(1,
| 1 |
| 2 |
| 9 |
| 2 |
| 1 |
| 2 |
B1(1,-
| 1 |
| 2 |
| 3 |
| 2 |
| n |
| 2 |
∴A1B1=|
| 1 |
| 2 |
| 1 |
| 2 |
A2B2=|2-(-1)|=3,
A3B3=|
| 9 |
| 2 |
| 3 |
| 2 |
…
AnBn=|
| 1 |
| 2 |
| n |
| 2 |
| n(n+1) |
| 2 |
∴
| 1 |
| A1B1 |
| 1 |
| A2B2 |
| 1 |
| 3 |
…
| 1 |
| AnBn |
| 2 |
| n(n+1) |
∴
| 1 |
| A1B1 |
| 1 |
| A2B2 |
| 1 |
| AnBn |
=1+
| 1 |
| 3 |
| 1 |
| 6 |
| 2 |
| n(n+1) |
=2[
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| n(n+1) |
=2(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=2(1-
| 1 |
| n+1 |
=
| 2n |
| n+1 |
故答案为:
| 2n |
| n+1 |
点评:本题考查了二次函数的综合题.解答此题的难点是求
+
+…+
=1+
+
…+
的值.在解时,采取了“裂项法”来求该数列的和.
| 1 |
| A1B1 |
| 1 |
| A2B2 |
| 1 |
| AnBn |
| 1 |
| 3 |
| 1 |
| 6 |
| 2 |
| n(n+1) |
练习册系列答案
相关题目