题目内容

【题目】如图1,点O为正方形ABCD 的中心,EAB 边上一点,FBC边上一点,EBF的周长等于 BC 的长.

(1)求∠EOF 的度数.

(2)连接 OAOC(如图2).求证:AOECFO.

(3)OE=OF,求的值.

【答案】(1)45°;(2)证明见解析;(3)

【解析】分析:(1)、BC上取一点G,使得CG=BE,连接OB、OC、OG,然后证明△OBE和△OCG全等,从而得出∠BOE=COG,BEO=CGO,OE=OG,根据三角形的周长得出EF=GF,从而得出△FOE和△GOF全等,得出∠EOF的度数;(2)、连接OA,根据点O为正方形ABCD的中心得出∠OAE=∠FCO=45°,结合∠BOE=∠COG得出∠AEO=∠COF,从而得出三角形相似;(3)、根据相似得出线段比,根据相似比求出AECO的关系,CFAO的关系,从而得出答案.

详解:解:(1)、如图,在BC上取一点G,使得CG=BE,连接OB、OC、OG.

∵点O为正方形ABCD的中心, ∴ OB=OC,BOC=90°,OBE=OCG=45°.

∴△OBE≌△OCG(SAS). ∴∠BOE=COG,BEO=CGO,OE=OG.

∴∠EOG=90°,∵△BEF的周长等于BC的长,

EF=GF. EOF≌△GOF(SSS).∴∠EOF=GOF=45°.

(2)、连接OA. O为正方形ABCD的中心, ∴∠OAE=FCO=45°.

∵∠BOE=COG, AEO=BOE+OBE=BOE+45°,

COF=COG+GOF=COG+45°. AEO=COF,且∠OAE=FCO.

AOECFO.

(3)、AOECFO,.即AE= ×CO,CF=AO÷

OE=OF,AE=CO,CF=AO.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网