题目内容
如图(1),AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.
(1)求证:∠ACD=∠B;
(2)如图(2),∠BDC的平分线分别交AC,BC于点E,F,求∠CEF的度数.
已知如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,求∠AOD的度数.
在《九章算术》中有求三角形面积公式“底乘高的一半”,但是在实际丈量土地面积时,量出高并非易事,所以古人想到了能否利用三角形的三条边长来求面积.我国南宋著名的数学家秦九韶(年—年)提出了“三斜求积术”,阐述了利用三角形三边长求三角形面积方法,简称秦九韶公式.在海伦(公元年左右,生平不详)的著作《测地术》中也记录了利用三角形三边长求三角形面积的方法,相传这个公式最早是由古希腊数学家阿基米德(公元前年—公元前年)得出的,故我国称这个公式为海伦一秦九韶公式.它的表达为:三角形三边长分别为、、,则三角形的面积(公式里的为半周长即周长的一半).
请利用海伦一秦九韶公式解决以下问题:
()三边长分别为、、的三角形面积为__________.
()四边形中,,,,,,四边形的面积为__________.
()五边形中,,,,,,,五边形的面积为__________.
如图,若点为函数图象上的一动点,表示点到原点的距离,则下列图象中,能表示与点的横坐标的函数关系的图象大致是( ).
A. B.
C. D.
下列图形中,即是轴对称图形又是中心对称图形的是( ).
A. B. C. D.
先化简,再求值:,其中x2+2x﹣1=0.
如图是一个邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m2,则AB的长度是_____m(可利用的围墙长度超过6m).
列不等式解应用题:在一次奥运知识竞赛中,共有道选择题,每道题的四个选项中,有且只有一个答案正确,选对得分,不选或错选扣分,如果得分不低于分才能得奖,那么要得奖至少应答对多少道题?
将分式 (、均为正数)中的字母、都扩大为原来的2倍,则分式的值_____ .