题目内容
如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AC=,∠ B=60°,则CD的长为___________
如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(, ),点C的坐标为(1,0),点P为斜边OB上的一动点,则PA+PC的最小值为( )
A. B. C. 2 D.
“ 六一”儿童节前夕,蕲黄县教育局准备给留守儿童赠送一批学习用品,先对浠泉镇浠泉小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6 名,7 名,8 名,10 名,12 名这五种情形,并将统计结果绘制成了如图所示的两幅不完整的统计图.
请根据上述统计图,解答下列问题:
(1)该校有多少个班级?并补全条形统计图;
(2)该校平均每班有多少名留守儿童?留守儿童人数的众数是多少?
(3)若该镇所有小学共有60 个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.
数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a,小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是… ( )
A. 勾股定理 B. 勾股定理的逆定理
C. 直径所对的圆周角是直角 D. 90°的圆周角所对的弦是直径
把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张.
(1)试求取出的两张卡片数字之和为奇数的概率;
(2)若取出的两张卡片数字之和为奇数,则甲胜;取出的两张卡片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明理由.
已知二次函数y=ax2+bx+c(a≠0)的图象如下图所示,且关于x的一元二次方程ax2+bx+c-m=0没有实数根,有下列结论:①b2-4ac>0;②abc<0;③m>2.其中,正确结论的个数是
A. 0 B. 1 C. 2 D. 3
如图,正方形ABCD的四个顶点分别在⊙O上,点P在CD上不同于点C的任意一点,则∠BPC的度数是 ( )
A. 45° B. 60° C. 75° D. 90°
小明在学习“锐角三角函数”中发现,用折纸的方法可求出tan22.5°,方法如下:将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以知道tan22.5°=_____________.
如图,点A,B,C,D在同一直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.