题目内容

设P为等腰直角△ABC斜边AB上或其延长线上一点,S=AP2+BP2,那么


  1. A.
    S<2CP2
  2. B.
    S=2CP2
  3. C.
    S>2CP2
  4. D.
    不确定
B
分析:此题分两种情况讨论:①当P在线段AB上,②当P在直线AB上(线段AB以外的部分);可利用勾股定理来探讨符合要求的点P有哪些.
解答:解:当P为AB上时,假设P为中点时,AP=PB=PC,满足条件,
当点P不为中点时,过点C作AB的垂线,亦满足条件;
当点P在BA的延长线上时,过点P作PF⊥BC,PE⊥CA;
PC2=PF2+CF2,AP2=AE2+PE2=AE2+FC2=2CF2
PB2=BF2+PF2=PF2+(BC+CF)2=2PF2
AP2+PB2=2CF2+PF2+PF2
2PC2=2PF2+2CF2
所以AP2+PB2=2PC2
即S=2CP2
同理,当点P在AB的延长线上时,S=2CP2
综上可知:S=2CP2
故选B.
点评:本题主要考查的是勾股定理的应用,解法并不复杂,难点在于将问题考虑全面.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网