题目内容
19.某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,那么将满池水排空所需要的时间为t(小时),写出时间t(小时)与Q之间的函数表达式t=$\frac{48}{Q}$.分析 根据蓄水量=每小时排水量×排水时间,即可算出该蓄水池的蓄水总量,再由防水时间=蓄水总量÷每小时的排水量即可得出时间t(小时)与Q之间的函数表达式.
解答 解:∵某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空,
∴该水池的蓄水量为8×6=48(立方米),
∵Qt=48,
∴t=$\frac{48}{Q}$.
故答案为:t=$\frac{48}{Q}$.
点评 本题考查了根据实际问题列出反比例函数关系式,解题的关键是根据数量关系列出t关于Q的函数关系式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出函数关系式是关键.
练习册系列答案
相关题目
10.把方程x2-8x-4=0化成(x-h)2=k的形式,结果为( )
| A. | (x-8)2=16 | B. | (x-8)2=20 | C. | (x-4)2=16 | D. | (x-4)2=20 |
14.汶川地震发生后某市组织了20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据下表提供的信息,解答下列问题:
(1)设装运食品的车辆数为x辆,装运药品的车辆数为y辆.求y与x的函数关系式;
(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么,车辆的安排有几种方案?并写出每种安排方案;
(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.
| 物资种类 | 食品 | 药品 | 生活用品 |
| 每辆汽车装载量/吨 | 6 | 5 | 4 |
| 每吨所需运费/元/吨 | 120 | 160 | 100 |
(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么,车辆的安排有几种方案?并写出每种安排方案;
(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.
4.“x与5的差的一半是正数”,用不等式可表示为( )
| A. | x-$\frac{5}{2}$>0 | B. | $\frac{x-5}{2}$>0 | C. | $\frac{x-5}{2}$≥0 | D. | $\frac{x}{2}$-5≥0 |
11.“a与b的平方和不小于它们积的2倍”正确的表示方法是( )
| A. | a2+b2>2ab | B. | a2+b2≥2ab | C. | (a+b)2>2ab | D. | (a+b)2≥2ab |