题目内容
【题目】如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是( )
![]()
A.4B.6.25C.7.5D.9
【答案】A
【解析】
先利用勾股定理判断△ABC为直角三角形,且∠BAC=90°,继而证明四边形AEOF为正方形,设⊙O的半径为r,利用面积法求出r的值即可求得答案.
∵AB=5,BC=13,CA=12,
∴AB2+AC2=BC2,
∴△ABC为直角三角形,且∠BAC=90°,
∵⊙O为△ABC内切圆,
∴∠AFO=∠AEO=90°,且AE=AF,
∴四边形AEOF为正方形,
设⊙O的半径为r,
∴OE=OF=r,
∴S四边形AEOF=r,
连接AO,BO,CO,
![]()
∴S△ABC=S△AOB+S△AOC+S△BOC,
∴
,
∴r=2,
∴S四边形AEOF=r=4,
故选A.
练习册系列答案
相关题目
【题目】为进一步提升学生体质健康水平,我市某校计划用400元购买10个体育用品,备选体育用品及单价如表:
备用体育用品 | 足球 | 篮球 | 排球 |
单价(元) | 50 | 40 | 25 |
(1)若400元全部用来购买足球和排球共10个,则足球和排球各买多少个;
(2)若学校先用一部分资金购买了a个排球,再用剩下的资金购买了相同数量的足球和篮球,此时正好剩余30元,求a的值.