题目内容
如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=45°.∠B′=110°,则∠BCA′的度数是( )
A.55° B.75° C.95° D.110°
(本题6分)基本事实:“若ab=0,则a=0或b=0”.一元二次方程x2-x-2=0可通过因式分解化为(x-2)(x+1)=0,由基本事实得x-2=0或x+1=0,即方程的解为x=2或x=-1.
(1)试利用上述基本事实,解方程:2x2-x=0:
(2)若(x2+y2)(x2+y2-1)-2=0,求x2+y2的值.
如图,OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①=; ②阴影部分面积是(k1+k2);③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是( )
A.①②③ B.②④ C.①③④ D.①④
已知关于x的方程=3的解是正数,则m的取值范围为 .
如图1,在平面直角坐标系中,将□ABCD放置在第一象限,且AB//x 轴.直线y=-x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图像如图2所示,则□ABCD的面积为 ( )
A.5 B.5 C.10 D.10
(本题满分9分)已知:∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O 重合),连接AC交射线OE于点D.设∠OAC=x°.
(1)如图1,若AB∥ON,则:
①∠ABO的度数是 ;
②当∠BAD=∠ABD时,x= 120°
;当∠BAD=∠BDA时,x= 60°
.20°;
(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.
(每小题3分,共6分)计算:
(1)
(2)
下列计算正确的是( )
A. B. C. D.
已知多项式是关于的完全平方式,则 ;