题目内容

如图,AB∥CD,AD和BC相交于点O,∠A=40°,∠AOB=75°.则∠C等于


  1. A.
    40°
  2. B.
    65°
  3. C.
    75°
  4. D.
    115°
B
分析:由∠A=40°,∠AOB=75°,根据三角形内角和定理,即可求得∠B的度数,又由AB∥CD,根据两直线平行,内错角相等,即可求得∠C的值.
解答:∵∠A=40°,∠AOB=75°.
∴∠B=180°-∠A-∠AOB=180°-40°-75°=65°,
∵AB∥CD,
∴∠C=∠B=65°.
故选B.
点评:此题考查了平行线的性质与三角形内角和定理.解题的关键是掌握两直线平行,内错角相等的定理的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网