题目内容
【题目】如图,OM是∠AOC的平分线,ON是∠BOC的平分线.
(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?
(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;
(3)如图3,当∠AOB=α,∠BOC=β时,猜想∠MON与α、β有数量关系吗?如果有,指出结论并说明理由.
![]()
【答案】(1)45°;(2)∠MON=
α.(3)∠MON=
α
【解析】
试题分析:(1)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;
(2)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;
(3)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可.
解:(1)如图1,∵∠AOB=90°,∠BOC=60°,
∴∠AOC=90°+60°=150°,
∵OM平分∠AOC,ON平分∠BOC,
∴∠MOC=
∠AOC=75°,∠NOC=
∠BOC=30°
∴∠MON=∠MOC﹣∠NOC=45°.
(2)如图2,∠MON=
α,
理由是:∵∠AOB=α,∠BOC=60°,
∴∠AOC=α+60°,
∵OM平分∠AOC,ON平分∠BOC,
∴∠MOC=
∠AOC=
α+30°,∠NOC=
∠BOC=30°
∴∠MON=∠MOC﹣∠NOC=(
α+30°)﹣30°=
α.
(3)如图3,∠MON=
α,与β的大小无关.
理由:∵∠AOB=α,∠BOC=β,
∴∠AOC=α+β.
∵OM是∠AOC的平分线,ON是∠BOC的平分线,
∴∠MOC=
∠AOC=
(α+β),
∠NOC=
∠BOC=
β,
∴∠AON=∠AOC﹣∠NOC=α+β﹣
β=α+
β.
∴∠MON=∠MOC﹣∠NOC
=
(α+β)﹣
β=
α
即∠MON=
α.