题目内容
20.(1)求证:△ABC≌△ABF;
(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.
分析 (1)首先利用平行线的性质得到∠FAB=∠CAB,然后利用SAS证得两三角形全等即可;
(2)当∠CAB=60°时,四边形ADFE为菱形,根据∠CAB=60°,得到∠FAB=∠CAB=∠CAB=60°,从而得到EF=AD=AE,利用邻边相等的平行四边形是菱形进行判断四边形ADFE是菱形.
解答 解:(1)证明:∵EF∥AB,
∴∠E=∠CAB,∠EFA=∠FAB,
∵∠E=∠EFA,
∴∠FAB=∠CAB,
在△ABC和△ABF中,
$\left\{\begin{array}{l}{AF=AC}\\{∠FAB=∠CAB}\\{AB=AB}\end{array}\right.$,
∴△ABC≌△ABF;
(2)当∠CAB=60°时,四边形ADFE为菱形.
证明:∵∠CAB=60°,
∴∠FAB=∠CAB=∠CAB=60°,
∴EF=AD=AE,
∴四边形ADFE是菱形.
点评 本题考查了菱形的判定、全等三角形的判定与性质及圆周角定理的知识,解题的关键是了解菱形的判定方法及全等三角形的判定方法,难度不大.
练习册系列答案
相关题目
5.
如图,将三角形纸板的直角顶点放在直尺的一边上,∠1=20°,∠2=40°,则∠3等于( )
| A. | 50° | B. | 30° | C. | 20° | D. | 15° |
12.
如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为( )
| A. | 26° | B. | 36° | C. | 46° | D. | 56° |
9.在“青春脉动•唱响黔南校园青年歌手大赛”总决赛中,7位评委对某位选手评分为(单位:分):9、8、9、7、8、9、7.这组数据的众数和平均数分别是( )
| A. | 9、8 | B. | 9、7 | C. | 8、7 | D. | 8、8 |