题目内容

有一边长为2的正方形纸片ABCD,先将正方形ABCD对折,设折痕为EF(如图①);再沿过点D的折痕将角A翻折,使得点A落在EF的H上(如图②),折痕交AE于点G,则EG的长度为


  1. A.
    4数学公式-6
  2. B.
    2数学公式-3
  3. C.
    8-4数学公式
  4. D.
    4-2数学公式
B
分析:观察图形,利用正方形性质,勾股定理,三角函数等知识即可解答.
解答:本题可通过用EG表示EH,然后通过EF的长来求EG.
∵∠GHD=90°
∴∠EHG+∠DHF=90°
∵∠EGH+∠EHG=90°
∴∠EGH=∠DHF
Rt△HDF中,HD=2,DF=1
根据勾股定理可得出:FH==
sin∠DHF=DF:DH=1:2,因此∠DHF=30°
Rt△EGH中,设EG=x,EH=EG•tan∠EGH=x•tan30°=
因为EF=EH+HF=+=2,x=2-3,故选B.
点评:本题综合考查了正方形的性质,勾股定理,三角函数等知识点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网