题目内容
如图所示,△ABC与点O在10×10的网格中的位置如图所示,设每个小正方形的边长为1.
(1)画出△ABC绕点O旋转180°后的图形;
(2)若⊙M能盖住△ABC,则⊙M的半径最小值为 .
如图,过反比例函数(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为 .
已知二次函数y=2x2﹣4x+1
(1)用配方法化为y=a(x﹣h)2+k的形式;
(2)写出该函数的顶点坐标;
(3)当0≤x≤3时,求函数y的最大值.
袋中装有除颜色外完全相同的a个白球、b个红球、c个黄球,则任意摸出一个球是黄球的概率为( )
A. B. C. D.
某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售是600件,而销售单价每涨1元,就会少售出10件玩具.设该种品牌玩具的销售单价为x元(x>40),销售量为y件,销售该品牌玩具获得的利润为w元.
(1)根据题意,填写下表:
(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元?
(3)在(1)问条件下,求商场销售该品牌玩具获得的最大利润是多少?此时玩具的销售单价应定为多少?
二次函数y=2(x﹣3)2﹣4的最小值为 .
如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是( )
A.50° B.60° C.70° D.80°
点G是△ABC的重心,GD∥AB,交边BC于点D,如果BC=6,那么CD 的长是 .
定义:如果M个不同的正整数,对其中的任意两个数,这两个数的积能被这两个数的和整除,则称这组数为M个数的祖冲之数组.如(3,6)为两个数的祖冲之数组,因为3×6能被(3+6整除);又如(15,30,60)为三个数的祖冲之数组,因为(15×30)能被(15+30)整除,(15×60)能被(15+60)整除,(30×60)能被(30+60)整除…
(1)我们发现,3和6,4和12,5和20,6和30…,都是两个数的祖冲之数组;由此猜测n和n(n﹣1)(n≥2,n为整数)组成的数组是两个数的祖冲之数组,请证明这一猜想.
(3)若(4a,5a,6a)是三个数的祖冲之数组,求满足条件的所有三位正整数a.