题目内容

【题目】如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AEPQ于点F.若AB=2,∠ABP=60°,则线段AF的长为_____

【答案】2

【解析】

作高线BG,根据直角三角形30度角的性质得:BG=1,AG=,可得AF的长.

如图,作高线BG,

MNPQ,

∴∠NAB=ABP=60°,

由题意得:AF平分∠NAB,

∴∠1=2=30°,

∵∠ABP=1+3,

∴∠3=30°,

∴∠1=3=30°,

AB=BF,AG=GF,

AB=2,

BG=AB=1,

AG=

AF=2AG=2

故答案为:2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网