题目内容
如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是
- A.M或O或N
- B.E或O或C
- C.E或O或N
- D.M或O或C
A
分析:分类:若以M为旋转中心,把正方形ABCD顺时针旋转90°;若以O为旋转中心,把正方形ABCD旋转180°;若以N为旋转中心,把正方形ABCD逆时针旋转90°,然后通过分别找出正方形EFGH与正方形ABCD的对应点来判断正方形EFGH是否由正方形ABCD绕某点旋转得到.
解答:若以M为旋转中心,把正方形ABCD顺时针旋转90°,A点对应点为H,B点对应点为E,C点对应点为F,D点对应点为G,则可得到正方形EFGH;
若以O为旋转中心,把正方形ABCD旋转180°,A点对应点为G,B点对应点为H,C点对应点为E,D点对应点为F,则可得到正方形EFGH;
若以N为旋转中心,把正方形ABCD逆时针旋转90°,A点对应点为F,B点对应点为G,C点对应点为H,D点对应点为E,则可得到正方形EFGH.
故选A.
点评:本题考查了性质的性质:旋转前后两图形全等,即对应角相等,对应线段相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正方形的性质.
分析:分类:若以M为旋转中心,把正方形ABCD顺时针旋转90°;若以O为旋转中心,把正方形ABCD旋转180°;若以N为旋转中心,把正方形ABCD逆时针旋转90°,然后通过分别找出正方形EFGH与正方形ABCD的对应点来判断正方形EFGH是否由正方形ABCD绕某点旋转得到.
解答:若以M为旋转中心,把正方形ABCD顺时针旋转90°,A点对应点为H,B点对应点为E,C点对应点为F,D点对应点为G,则可得到正方形EFGH;
若以O为旋转中心,把正方形ABCD旋转180°,A点对应点为G,B点对应点为H,C点对应点为E,D点对应点为F,则可得到正方形EFGH;
若以N为旋转中心,把正方形ABCD逆时针旋转90°,A点对应点为F,B点对应点为G,C点对应点为H,D点对应点为E,则可得到正方形EFGH.
故选A.
点评:本题考查了性质的性质:旋转前后两图形全等,即对应角相等,对应线段相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正方形的性质.
练习册系列答案
相关题目
如图1,正方形ABCD和正三角形EFG的边长都为1,点E,F分别在线段AB,AD上滑动,设点G到CD的距离为x,到BC的距离为y,记∠HEF为α(当点E,F分别与B,A重合时,记α=0°).
(1)当α=0°时(如图2所示),求x,y的值(结果保留根号);
(2)当α为何值时,点G落在对角形AC上?请说出你的理由,并求出此时x,y的值(结果保留根号);
(3)请你补充完成下表(精确到0.01):
(4)若将“点E,F分别在线段AB,AD上滑动”改为“点E,F分别在正方形ABCD边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G运动所形成的大致图形.
(参考数据:
≈1.732,sin15°=
≈0.259,sin75°=
≈0.966)

(1)当α=0°时(如图2所示),求x,y的值(结果保留根号);
(2)当α为何值时,点G落在对角形AC上?请说出你的理由,并求出此时x,y的值(结果保留根号);
(3)请你补充完成下表(精确到0.01):
| α | 0° | 15° | 30° | 45° | 60° | 75° | 90° |
| x | 0.03 | 0 | 0.29 | ||||
| y | 0.29 | 0.13 | 0.03 |
(参考数据:
| 3 |
| ||||
| 4 |
| ||||
| 4 |
| 如图1,正方形ABCD和正三角形EFG的边长都为1,点E,F分别在线段AB,AD上滑动,设点G到CD的距离为x,到BC的距离为y,记∠HEF为 | ||||||||||||||||||||||||
|
| ||||||||||||||||||||||||
| (1)当 (2)当 | ||||||||||||||||||||||||
(参考数据: |
如图1,正方形ABCD和正三角形EFG的边长都为1,点E,F分别在线段AB,AD上滑动,设点G到CD的距离为x,到BC的距离为y,记∠HEF为α(当点E,F分别与B,A重合时,记α=0°).
(1)当α=0°时(如图2所示),求x,y的值(结果保留根号);
(2)当α为何值时,点G落在对角形AC上?请说出你的理由,并求出此时x,y的值(结果保留根号);
(3)请你补充完成下表(精确到0.01):
(4)若将“点E,F分别在线段AB,AD上滑动”改为“点E,F分别在正方形ABCD边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G运动所形成的大致图形.
(参考数据:
≈1.732,sin15°=
≈0.259,sin75°=
≈0.966)


(1)当α=0°时(如图2所示),求x,y的值(结果保留根号);
(2)当α为何值时,点G落在对角形AC上?请说出你的理由,并求出此时x,y的值(结果保留根号);
(3)请你补充完成下表(精确到0.01):
| α | 0° | 15° | 30° | 45° | 60° | 75° | 90° |
| x | 0.03 | 0.29 | |||||
| y | 0.29 | 0.13 | 0.03 |
(参考数据:
如图1,正方形ABCD和正三角形EFG的边长都为1,点E,F分别在线段AB,AD上滑动,设点G到CD的距离为x,到BC的距离为y,记∠HEF为α(当点E,F分别与B,A重合时,记α=0°).
(1)当α=0°时(如图2所示),求x,y的值(结果保留根号);
(2)当α为何值时,点G落在对角形AC上?请说出你的理由,并求出此时x,y的值(结果保留根号);
(3)请你补充完成下表(精确到0.01):
(4)若将“点E,F分别在线段AB,AD上滑动”改为“点E,F分别在正方形ABCD边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G运动所形成的大致图形.
(参考数据:
≈1.732,sin15°=
≈0.259,sin75°=
≈0.966)


(1)当α=0°时(如图2所示),求x,y的值(结果保留根号);
(2)当α为何值时,点G落在对角形AC上?请说出你的理由,并求出此时x,y的值(结果保留根号);
(3)请你补充完成下表(精确到0.01):
| α | 0° | 15° | 30° | 45° | 60° | 75° | 90° |
| x | 0.03 | 0.29 | |||||
| y | 0.29 | 0.13 | 0.03 |
(参考数据:
(2008•江西)如图1,正方形ABCD和正三角形EFG的边长都为1,点E,F分别在线段AB,AD上滑动,设点G到CD的距离为x,到BC的距离为y,记∠HEF为α(当点E,F分别与B,A重合时,记α=0°).
(1)当α=0°时(如图2所示),求x,y的值(结果保留根号);
(2)当α为何值时,点G落在对角形AC上?请说出你的理由,并求出此时x,y的值(结果保留根号);
(3)请你补充完成下表(精确到0.01):
(4)若将“点E,F分别在线段AB,AD上滑动”改为“点E,F分别在正方形ABCD边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G运动所形成的大致图形.
(参考数据:
≈1.732,sin15°=
≈0.259,sin75°=
≈0.966)


(1)当α=0°时(如图2所示),求x,y的值(结果保留根号);
(2)当α为何值时,点G落在对角形AC上?请说出你的理由,并求出此时x,y的值(结果保留根号);
(3)请你补充完成下表(精确到0.01):
| α | 0° | 15° | 30° | 45° | 60° | 75° | 90° |
| x | 0.03 | 0.29 | |||||
| y | 0.29 | 0.13 | 0.03 |
(参考数据: