题目内容
A.1
B.
C.2
D.
【答案】分析:首先根据反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=
|k|,得出S△AOB=S△ODC=
,再根据反比例函数的对称性可知:OB=OD,得出S△AOB=S△ODA,S△ODC=S△OBC,最后根据四边形ABCD的面积=S△AOB+S△ODA+S△ODC+S△OBC,得出结果.
解答:解:根据反比例函数的对称性可知:OB=OD,AB=CD,
∴四边形ABCD的面积=S△AOB+S△ODA+S△ODC+S△OBC=1×2=2.
故选C.
点评:本题主要考查了反比例函数
中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=
|k|.
解答:解:根据反比例函数的对称性可知:OB=OD,AB=CD,
∴四边形ABCD的面积=S△AOB+S△ODA+S△ODC+S△OBC=1×2=2.
故选C.
点评:本题主要考查了反比例函数
练习册系列答案
相关题目