题目内容
要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是( )
A.平均数 B.中位数 C.众数 D.方差
甲市火车货运站现有苹果1530吨,梨1150吨,安排一列货车将这批苹果和梨运往乙市.这列货车可以挂A、B两种不同规格的货箱共50节,已知用一节A型货箱的运费是0.5万元,用一节B型货箱的运费用是.0.8万元.
(1)设运输这批苹果和梨的总运费为y(万元),用A型货箱的节数为x(节),试写出y与x的函数关系式.
(2)已知35吨苹果和15吨梨可装满一节A型货箱,25吨苹果和35吨梨可装满一节B型车箱,请问运输所有苹果和梨的方案共有几种,请设计出来.
(3)利用函数的性质说明,在第(2)问的方案中,哪种方案的运费最少,最少运费用是多少?
将函数y=﹣3x+1的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为( )
A.y=﹣3x+3 B.y=﹣3x﹣1
C.y=﹣3(x+2)+1 D.y=﹣3(x﹣2)+1
在△中,已知,,则△的面积等于 .
某函数y=(1+2m)x中,函数值y随自变量x的增大而减小,那么m的取值范围是( )
A. B. C. D.
如图①,四边形ABCD中,AD∥BC,DC⊥BC,AD=6cm,DC=8cm,BC=12cm.动点M在CB上运动,从C点出发到B点,速度每秒2cm;动点N在BA上运动,从B点出发到A点,速度每秒1cm.两个动点同时出发,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒).
(1)求线段AB的长.
(2)当t为何值时,MN∥CD?
(3)设三角形DMN的面积为S,求S与t之间的函数关系式.
(4)如图②,连接BD,是否存在某一时刻t,使MN与BD互相垂直?若存在,求出这时的t值;若不存在,请说明理由.
去年5月31日世界卫生组织发起的第25个“世界无烟日”,为了更好的宣传吸烟的危害,某中学八年级一半数学兴趣小组设计了如下调查问卷,在五四广场随机调查了部分吸烟人群,并将调查结果绘制成统计图.
(1)本次接受调查的中人数是 人,并把条形统计图补充完整.
(2)在扇形统计图中,E选项所在扇形的圆心角的度数是 .
(3)若青岛市约有烟民14万人,求对吸烟有害持“无所谓”态度的约有多少人.
已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD.
(1)如图1,若AB=AE,∠DAC=∠EAB=60°,求∠BFC的度数;
(2)如图2,∠ABC=α,∠ACD=β,BC=4,BD=6.
①若α=30°,β=60°,AB的长为 ;
②若改变α,β的大小,但α+β=90°,△ABC的面积是否变化?若不变,求出其值;若变化,说明变化的规律.
已知x1,x2是方程的两根,则的值为( )
A.3 B.5 C.7 D.