题目内容

如图,△ABD和△ACE都是等腰直角三角形,∠BAD和∠CAE是直角,若AB=6,BC=5,AC=4,则DE的长为________.


分析:先连接BE得到△ADC≌△ABE,进而得到∠DFB=90°从而得到四个直角三角形,在多次运用勾股定理可得出DE的长.
解答:解:如图,连接BE,交CD于F.
根据SAS可以证明△ADC≌△ABE,则∠ADC=∠ABE.则∠DBF+∠BDF=90°
则∠BFD=90°.根据勾股定理得:
DF2=BD2-BF2,EF2=CE2-CF2,BF2+CF2=BC2.根据已知条件和勾股定理得BD=6,CE=4
所以DE2=72+32-25,DE=
点评:此题首先要巧妙构造辅助线发现全等三角形,进一步发现直角三角形,连续运用了勾股定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网