题目内容
若不等式2x<4的解都能使关于x的一次不等式(a﹣1)x<a+5成立,则a的取值范围是( )
A. 1<a≤7 B. a≤7 C. a<1或a≥7 D. a=7
如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,则□ABCD的周长是( )
A.16 B.14 C.20 D.24
如图所示,双曲线经过Rt△BOC斜边上的点A,且满足,与BC交于点D,,求k=______________
如图,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).
(1)求抛物线的解析式;
(2)过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,在x轴上找一点H,使D、G、H、F四点所围成的四边形周长最小.求出这个最小值及点G、H的坐标.
如图,在中,D为斜边AB上一点,AD=5,BD=4,四边形CEDF为正方形,则图中阴影部分的面积为_____________;
在初中学习中,我们知道:点到直线的距离是直线外一点和直线上各点连接的所有线段中,最短的线段(即垂线段)的长度.类比,我们给出点到某一个图形的距离的定义:点P与图形l上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P到图形l的距离,记为d(P,图形l).特别地,点P在图形上,则点P到图形的距离为0,即d(P,图形)=0.
(1)若点P是⊙O内一点,⊙O的半径是5,OP=2,则d(P,⊙O)= .
(2)如图1,在平面直角坐标系xOy中,A(4,0).若M(0,2),N(﹣1,0),则d(M,∠AOB)= ,d(N,∠AOB)= .
(3)在正方形OABC中,点B(4,4),如图2,若点P在直线y=3x+4上,且d(P,∠AOB)=2,求点P的坐标;
(4)已知点P(m+1,2m﹣3),以点E(1,0)为圆心,EO长为半径作⊙E,则d(P,⊙E)的最小值是 .
为了丰富同学的课余生活,某学校将举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是________”的问卷调查,要求学生只能从“A(绿博园),B(人民公园),C(湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.
回答下列问题:
(1)本次共调查了多少名学生?
(2)补全条形统计图;
(3)若该学校共有3 600名学生,试估计该校去湿地公园的学生人数.
如图所示的几何体的俯视图是( )
A. B. C. D.
不等式组的解集是______。