题目内容
如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为( )
A. 10cm B. 8cm C. 6cm D. 5cm
如图①,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.
(1)如图②,当BC=4,DE=5,tan∠FMN=1时,求的值;
(2)若tan∠FMN=,BC=4,则可求出图中哪些线段的长?写出解答过程;
(3)连接CM,DN,CF,DF.试证明△FMC与△DNF全等;
(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.
如图,是⊙的直径,弦⊥于点,,则( )
A. B. C. D.
如图,直线与x轴交于点B,与y轴交于点A,以线段AB为边,在第一象限内作正方形ABCD,点C落在双曲线()上,将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在双曲线()上的点D1处,则a= .
任意选择电视的某一频道,正在播放动画片,这个事件是 事件.(填“必然”“不可能”或“不确定”)
抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.
(1)直接写出抛物线L的解析式;
(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;
(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.
解方程组:
某研究性学习小组进行了探究活动.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离BO=5m.
(1)求这个梯子顶端A距地面有多高;
(2)如果梯子的顶端A下滑4 m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4 m吗?为什么?
(3)亮亮在活动中发现无论梯子怎么滑动,在滑动的过程中梯子上总有一个定点到墙角O的距离始终是不变的定值,会思考问题的你能说出这个点并说明其中的道理吗?
以下是某网络书店月关于图书销售情况的两个统计图:
()求月份该网络书店绘本类图书的销售额.
()若已知月份与月份这两个月的绘本类图书销售额相同,请补全统计图.
()有以下两个结论:
①该书店第一季度的销售总额为万元.
②该书店月份到月份绘本类图书销售额的月增长率相等.
请你判断以上两个结论是否正确,并说明理由.